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Comment on ‘‘nonlinear viscosity and Grad’s method’’
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In their recent paper@Phys. Rev. E60, 4052~1999!# Uribe and Garcı´a-Colı́n suggest that the stress tensor
associated with the nonlinear viscosity formulah5h0sinh21k/k (k5a Rayleigh dissipation function! van-
ishes asymptotically as the magnitude of the velocity gradient increases. In this Comment, it is pointed out that
their remark is invalid, because the stress tensor asymptotically exhibits a logarithmick dependence. It is also
pointed out that their evolution equations for the stress tensor components are missing the terms containing the
velocity gradients in the transversal directions and, as a consequence, give rise to a vanishing shear stress,
contrary to the experimental evidence of gas flow in a tube.
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In a recent paper@1# @Phys. Rev. E60, 4052 ~1999!#,
henceforth referred to as Ref.@1# in this Comment, Uribe and
Garcı́a-Colı́n calculate nonlinear viscosity formulas of a d
lute monatomic gas that undergoes a unidirectional flow. T
kinetic equation used is the Boltzmann kinetic equation a
the distribution function obeying the kinetic equation is a
sumed to have cylindrical symmetry. The unidirectional flo
is parallel to thex axis of the coordinate system. The a
sumed cylindrical symmetry therefore makes the distribut
function symmetric with respect to they and z directions.
Furthermore, the temperature is assumed to be uniform
that there is no heat flow. Because the flow is unidirectio
in the x direction, the mean velocityu of the fluid has thex
component only:

uÄ~ux ,uy ,uz!5~ux,0,0!. ~1!

The purpose of this Comment is to correct their comm
on the non-Newtonian viscosity formula, Eq.~52! in Ref. @1#,
which I derived in my study of rheology on the basis of t
Boltzmann equation, and to comment on the nonlinear
cosity obtained in their paper.

Having calculated the nonlinear viscosity, Uribe a
Garcı́a-Colı́n compare their viscosity formula with the afor
mentioned inverse hyperbolic sine formula that I have
rived @2,3# by using the first-order cumulant approximatio
for the collision term in the Boltzmann equation:

h5h0

sinh21k

k
. ~2!

Here k is related to the Rayleigh dissipation function a
defined by

k5@~mkT!1/4Ah0/pd#~@¹u# (2):@¹u# (2)!1/2, ~3!

with h0 denoting the Chapman-Enskog shear viscosity of
gas and d the diameter of the molecule and@¹u# (2)

51/2@¹u1(¹u) t#21/3d Tr(¹u), by now a well-recognized
symbol in kinetic theory@4#. The symbold is the unit second
rank tensor. The viscosity formula~2! is valid under the ap-
proximation that neglects the normal stress differences (Pxx
2Pyy) and (Pyy2Pzz) in the evolution equation for the
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stress tensor in the case of the unidirectional flow, as
scribed, for example, in Ref.@3#. However, the formula~2! is
consistent with the thermodynamic laws. It is a generic fo
of the Eyring formula@5# in rheology; the original Eyring
formula, derived on the basis of the absolute reaction r
theory, contains an empirically adjustable parameter~relax-
ation time!, whereas there is no adjustable parameter ot
than the potential parameters in the present expression.
viscosity formula has been rather extensively tested
shown to correctly account for a number of flow phenome
@6–13# in gases and liquids. It yields a vanishing nonline
viscosity, as (@¹u# (2):@¹u# (2))1/2→`, and the Newtonian
viscosityh0, as (@¹u# (2):@¹u# (2))1/2→0.

In their paper@1# Uribe and Garcı´a-Colı́n suggest that this
formula is probably incorrect in the case of implosion b
cause the viscosity vanishes in the limit ofu¹xuxu→` and
thus the stress vanishes in the same limit. Their remark is
valid, because although the viscosity certainly vanishes
the aforementioned limit, the stress does not vanish,
grows logarithmically. This is easy to show, because, if w
denote the norm of tensor@¹u# (2) by i@¹u# (2)i
5i@¹u# (2):@¹u# (2)u1/2 and if there are no other gradien
than, for example,¹xux in the flow in question as assumed
their argument against formula~2!, then i@¹u# (2)i
52/3u¹xuxu and for thexx component of the stress tensor w
have the asymptotic form

uPxxu[uPxx2pu5
2

3
h0

sinh21k

k
u¹xuxu; lnu¹xuxu, ~4!

as u¹xuxu→`. Therefore their remark has no validity wha
soever. This form of the stress tensor certainly can dis
guish implosion and explosion because then generally

Pxx;
@¹u#xx

(2)

i@¹u# (2)i
lni@¹u# (2)i;6 lni@¹u# (2)i ,

which gives opposite signs for implosion and explosion.
I would like to make also the following comments. Befo

attempting comparison with other theories, their nonline
viscosity formula should have been tested against so
simulation or experimental results for nonlinear viscosity
©2002 The American Physical Society01-1
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ported in the literature, as has been done for Eq.~2! since
1983 over a number of occasions@6–13#. Plausible limits of
the nonlinear viscosity in special cases are by no mean
assurance for its veracity in the face of experiment.

If the flow velocity is given by Eq.~1! and steady as is
assumed in Ref.@1#, then the steady-state equation of con
nuity is given by

¹x~rux!50, ~5!

wherer is the mass density of the gas and¹x5]/]x. This
equation means that

rux5M , ~6!

whereM is independent ofx, but may depend on coordinate
y andz, if the flow is not strictly one-dimensional. Unless th
gas molecules are confined to move on a line parallel to
x axis, ux will generally depend ony andz. Because of the
distribution function taken, and the three-dimensional Bo
mann equation used for the calculation, the manner in wh
it is used in the calculation, and the fact that there appear
stress tensor components other thanPxx in the evolution
equation forPxx in Ref. @1#, one is inevitably led to conclude
that the flow considered is not really one-dimensional, bu
fact, unidirectional, and hence, there is no reason to com
us to assume thatux and the components ofP do not depend
on y and z. It must be emphasized that if the flow is on
dimensional,P has thePxx component only, but no others i
the case of their flow configuration. Since they consid
other stress tensor components,¹yux5¹zux50 is an addi-
tional assumption, which unfortunately yields deficient ev
lution equations for the stress tensor components derive
Ref. @1# and gives rise to a vanishing shear stress, contrar
the experimental evidence in the case of gas flow in a l
tube. This assumption on the velocity gradients is not app
priate unless the continuum equations are truly o
dimensional and also the kinetic equation is on
dimensional, but the kinetic equation used is not o
dimensional. Since it follows from Eqs.~5! and ~6! that
¹xux5M (y,z)¹xv, wherev51/r is the specific volume and
¹xv may be taken for a constant if the rate of volume chan
cs
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is a constant, it obviously suggests that they and z depen-
dence of stress tensor componentsPxx , Pyy , Pxy , etc. ap-
pearing in their stress evolution equations cannot be ru
out for the flow problem.

Another point about their nonlinear viscosity formula
that it predicts two different material functions~viscosities!
depending on the sign of the velocity gradient, namely, i
plosion and explosion of the same gas have two differ
nonlinear viscosity, values. If nonlinear viscosities are ma
rial functions characteristic of a given material, then it
questionable why the gas should have two different mate
functions depending on whether it contracts or expan
What really counts in explaining flow phenomena is not t
nonlinear viscosity, but the stress tensor appearing in
hydrodynamic equations, that is, the momentum and ene
balance equations. Preoccupation with a nonlinear visco
in the face of flow phenomena far removed from equilibriu
can be misleading with regard to the flow problem in han

In conclusion, the vanishing nonlinear viscosity in Eq.~2!
does not mean that the stress tensor also vanishes in the
of u¹xuxu→`; on the contrary, the stress tensor in fact gro
logarithmically with u¹xuxu. Therefore the statement o
Uribe and Garcı´a-Colı́n regarding the asymptotic behavior o
the stress tensor in connection with Eq.~2! is incorrect. The
form of the distribution function and the manner in which
is used, the kinetic equation, and the stress evolution eq
tions for various stress tensor components in Ref.@1# suggest
that the velocity gradients¹yux and ¹zux , which were set
equal to zero because of the assumption thatux is a function
of x only, are unjustifiably absent in the the stress evolut
equations derived by Uribe and Garcı´a-Colı́n for the unidi-
rectional flow. Because of this assumption, the shear visc
ity turns out to be absent and the stress tensor evolu
equation has become inappropriate for the flow problem c
sidered. If the flow is truly one-dimensional, the stress ten
componentsPyy , Pxy , and /orPyz should not appear in the
evolution equation forPxx .
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