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Comment on “nonlinear viscosity and Grad’s method”
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In their recent papefPhys. Rev. B0, 4052(1999] Uribe and Gar@-Coln suggest that the stress tensor
associated with the nonlinear viscosity formujas 7osinh~1x/x (x=a Rayleigh dissipation functigrvan-
ishes asymptotically as the magnitude of the velocity gradient increases. In this Comment, it is pointed out that
their remark is invalid, because the stress tensor asymptotically exhibits a logarithdajgendence. It is also
pointed out that their evolution equations for the stress tensor components are missing the terms containing the
velocity gradients in the transversal directions and, as a consequence, give rise to a vanishing shear stress,
contrary to the experimental evidence of gas flow in a tube.
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In a recent papefl] [Phys. Rev. E60, 4052 (1999], stress tensor in the case of the unidirectional flow, as de-
henceforth referred to as Rél] in this Comment, Uribe and scribed, for example, in Reff3]. However, the formula?) is
Garca-Coln calculate nonlinear viscosity formulas of a di- consistent with the thermodynamic laws. It is a generic form
lute monatomic gas that undergoes a unidirectional flow. Thef the Eyring formula[5] in rheology; the original Eyring
kinetic equation used is the Boltzmann kinetic equation andormula, derived on the basis of the absolute reaction rate
the distribution function obeying the kinetic equation is as-theory, contains an empirically adjustable paramételax-
sumed to have cylindrical symmetry. The unidirectional flowation time, whereas there is no adjustable parameter other
is parallel to thex axis of the coordinate system. The as-than the potential parameters in the present expression. This
sumed cylindrical symmetry therefore makes the distributiorviscosity formula has been rather extensively tested and
function symmetric with respect to the and z directions.  shown to correctly account for a number of flow phenomena
Furthermore, the temperature is assumed to be uniform §&-13] in gases and liquids. It yields a vanishing nonlinear
that there is no heat flow. Because the flow is unidirectionabiscosity, as [Vu]®:[Vu]®?)¥2—e, and the Newtonian
in the x direction, the mean velocity of the fluid has thex  viscosity 7o, as (Vu]®:[Vu]®®)¥?—0.

component only: In their papef1] Uribe and Gar@-Coln suggest that this
formula is probably incorrect in the case of implosion be-
U=(Uy, Uy ,Uz) = (Uy,0,0). (1) cause the viscosity vanishes in the limit |,u,|—o and

%hus the stress vanishes in the same limit. Their remark is not

. ; . . valid, because although the viscosity certainly vanishes in
on the non-Newtonian viscosity formula, B§2) in Ref.[1], "2 mentioned limit, the stress does not vanish, but

which | derived in my study of rheology on the basis of the | hmically This i h b "
Boltzmann equation, and to comment on the nonlinear visJrows ogarithmically This is easy to show, because, if we

cosity obtained in their paper denote the norm of tensor[Vu]® by [[Vu]®@|
Y ¢ paper. N . =[[[Vu]@:[Vu]®@|¥2 and if there are no other gradient
Having calculated the nonfinear viscosity, Uribe andthan for e;<am leY 4 uy in the flow in question as assumed in
Garca-Coln compare their viscosity formula with the afore- th ir’ rfaum rqt X Xin t form Ia?Z) then [[Vu]®)|
mentioned inverse hyperbolic sine formula that | have de'—3/3 Va gu edf a;%a st tormu o et [ tU]
rived [2,3] by using the first-order cumulant approximation E |thXUX| an tort' ?XX component ot the stress tensor we
for the collision term in the Boltzmann equation: ave the asymptotic form

The purpose of this Comment is to correct their commen

2  sinh 'k

el
sinh™ "« |HXX|E|Pxx_p|:§WOT|VXUX|N|n|vxux|v (4)

n=MoT (2

Here k is related to the Rayleigh dissipation function and aS|VXuX|_>_°°' Therefore their remark has no yalidity Wh.at.'
defined by soever. This form of the stress tensor certainly can distin-

guish implosion and explosion because then generally

Kk=[(MKT 7o/pd]([Vu]®:[VU]®)¥2  (3) @

[Vu]xx (2) (2)
- - < cosi xx~ o N[V U]~ = Inf| [V u]*],
with 74 denoting the Chapman-Enskog shear viscosity of the I[Vu]®|
gas andd the diameter of the molecule angVu]®
=1/ Vu+(Vu)']—1/36Tr(Vu), by now a well-recognized which gives opposite signs for implosion and explosion.
symbol in kinetic theory4]. The symboléis the unit second | would like to make also the following comments. Before
rank tensor. The viscosity formul@) is valid under the ap- attempting comparison with other theories, their nonlinear
proximation that neglects the normal stress differenégg ( viscosity formula should have been tested against some
—Pyy) and (Pyy,—P;,) in the evolution equation for the simulation or experimental results for nonlinear viscosity re-
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ported in the literature, as has been done for @j.since is a constant, it obviously suggests that thand z depen-
1983 over a number of occasiof&-13. Plausible limits of ~ dence of stress tensor componeRtg, Py, P, etc. ap-

the nonlinear viscosity in special cases are by no means grearing in their stress evolution equations cannot be ruled
assurance for its veracity in the face of experiment. out for the flow problem.

If the flow velocity is given by Eq(1) and steady as is Another point about their nonlinear viscosity formula is
assumed in Refl], then the steady-state equation of conti-that it predicts two different material functiorigiscositie$
nuity is given by depending on the sign of the velocity gradient, namely, im-

plosion and explosion of the same gas have two different
Vi(puy) =0, 5 nonlinear viscosity, values. If nonlinear viscosities are mate-
rial functions characteristic of a given material, then it is
questionable why the gas should have two different material
functions depending on whether it contracts or expands.
pu=M, (6)  What really counts in explaining flow phenomena is not the
nonlinear viscosity, but the stress tensor appearing in the
whereM is independent of, but may depend on coordinates hydrodynamic equations, that is, the momentum and energy
y andz, if the flow is not strictly one-dimensional. Unless the balance equations. Preoccupation with a nonlinear viscosity
gas molecules are confined to move on a line parallel to thé the face of flow phenomena far removed from equilibrium
X axis, u, will generally depend oty andz Because of the can be misleading with regard to the flow problem in hand.
distribution function taken, and the three-dimensional Boltz- In conclusion, the vanishing nonlinear viscosity in E2).
mann equation used for the calculation, the manner in whicldoes not mean that the stress tensor also vanishes in the limit
it is used in the calculation, and the fact that there appear thef |V,u,|—%; on the contrary, the stress tensor in fact grows
stress tensor components other tHag in the evolution logarithmically with |V,u,|. Therefore the statement of
equation forP,, in Ref.[1], one is inevitably led to conclude Uribe and Gar@a-Coln regarding the asymptotic behavior of
that the flow considered is not really one-dimensional, but irthe stress tensor in connection with E8) is incorrect. The
fact, unidirectional, and hence, there is no reason to compdbrm of the distribution function and the manner in which it
us to assume that, and the components & do not depend is used, the kinetic equation, and the stress evolution equa-
ony andz It must be emphasized that if the flow is one- tions for various stress tensor components in Refsuggest
dimensional P has theP,, component only, but no others in that the velocity gradient¥,u, and V,u,, which were set
the case of their flow configuration. Since they considerequal to zero because of the assumption thas a function
other stress tensor componerfig,u,=V,u,=0 is an addi- of x only, are unjustifiably absent in the the stress evolution
tional assumption, which unfortunately yields deficient evo-equations derived by Uribe and GaeToln for the unidi-
lution equations for the stress tensor components derived irectional flow. Because of this assumption, the shear viscos-
Ref.[1] and gives rise to a vanishing shear stress, contrary tdy turns out to be absent and the stress tensor evolution
the experimental evidence in the case of gas flow in a longquation has become inappropriate for the flow problem con-
tube. This assumption on the velocity gradients is not approsidered. If the flow is truly one-dimensional, the stress tensor
priate unless the continuum equations are truly onecomponent®,,, P,,, and /orP,, should not appear in the
dimensional and also the kinetic equation is one-evolution equation foP,y.
dimensional, but the kinetic equation used is not one-
dimensional. Since it follows from Eqgg5) and (6) that This work was supported in part by the Natural Sciences
V.u,=M(y,z)V,v, wherev = 1/p is the specific volume and and Engineering Research Council and the FCAR through
Vv may be taken for a constant if the rate of volume changdhe Center for the Physics of Materials, McGill University.

wherep is the mass density of the gas aWd=d/dx. This
equation means that
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